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SUMMARY

Streptozotocin is a natural product that selectively
kills insulin-secreting b cells, and is widely used to
generate mouse models of diabetes or treat pan-
creatic tumors. Several studies suggest that strep-
tozotocin toxicity stems from its N-nitrosourea
moiety releasing nitric oxide and possessing DNA
alkylating activity. However, it has also been pro-
posed that streptozotocin induces apoptosis by
inhibiting O-GlcNAcase, an enzyme that, together
with O-GlcNAc transferase, is important for dynamic
intracellular protein O-glycosylation. We have used
galacto-streptozotocin to chemically dissect the link
between O-GlcNAcase inhibition and apoptosis.
Using X-ray crystallography, enzymology, and cell
biological studies on an insulinoma cell line, we
show that, whereas streptozotocin competitively in-
hibits O-GlcNAcase and induces apoptosis, its
galacto-configured derivative no longer inhibits
O-GlcNAcase, yet still induces apoptosis. This sup-
ports a general chemical poison mode of action for
streptozotocin, suggesting the need for using more
specific inhibitors to study protein O-GlcNAcylation.

INTRODUCTION

Streptozotocin (STZ) is an N-methyl-N-nitrosoureido D-glucos-

amine derivative originally isolated from Streptomyces achromo-

genes half a century ago (Vavra et al., 1959). It was subsequently

discovered to be particularly toxic to pancreatic b cells that

secrete insulin, and has since been used extensively to create

animal models of type I diabetes (Mansford and Opie, 1968).

Due to its selective toxicity, it is now also in use for the treatment

of cancer of the pancreatic islets (Brentjens and Saltz, 2001).

Despite its use for over several decades, the mode of action of

STZ is not fully understood. Two, essentially conflicting, mecha-

nisms have been proposed. The first (termed the ‘‘chemical poi-

son model’’ here) is linked to the N-nitrosourea group that STZ

carries (see below for STZ chemical structure). Through chemi-

cal decomposition, this group can act as an alkylating agent

and/or a nitric oxide (NO) donor. Biochemical evidence has sug-

gested that STZ does indeed increase NO in pancreatic b cells

(Turk et al., 1993; Kaneto et al., 1995). Extensive literature also
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supports a genotoxic effect of STZ through its ability to directly

alkylate DNA (Yamamoto et al., 1981; Bolzán and Bianchi,

2002)—indeed, it is a general antibiotic with mutagenic activity

on both bacterial and eukaryotic cells (Gichner et al., 1968; Bol-

zán and Bianchi, 2002). It was initially unclear how STZ was se-

lectively toxic against b cells, but recent overexpression studies

and experiments with colorimetric STZ derivatives have demon-

strated that GLUT2, a glucose transporter selectively expressed

in pancreatic islets, also transports STZ (Schnedl et al., 1994;

Ran et al., 2007).

An entirely different explanation of STZ toxicity was proposed

more recently, and is based on the link between STZ and a cyto-

solic protein posttranslational modification through O-glycosyla-

tion with N-acetylglucosamine (O-GlcNAc), referred to here as the

‘‘O-GlcNAc-dependent model’’ of STZ toxicity. Protein O-GlcNA-

cylation was discovered two decades ago, and is an abundant,

dynamic, and inducible posttranslational modification of serine/

threonine residues on intracellular proteins in higher eukaryotes

(Zachara and Hart, 2006; Hart et al., 2007). O-GlcNAcylation

has been shown to be involved in diverse cellular processes

such as the cell cycle, nutrient sensing, stress response, protea-

somal regulation, and the response to insulin. Two proteins, con-

served from Caenorhabditis elegans to human, are involved in

maintaining O-GlcNAc levels. The O-GlcNAc transferase (OGT)

transfers GlcNAc from the sugar nucleotide UDP-GlcNAc to ac-

ceptor serines/threonines on proteins (Haltiwanger et al., 1992;

Hart et al., 2007). The O-GlcNAcase (OGA) hydrolyzes O-GlcNA-

cylated proteins to the free protein and GlcNAc (Gao et al., 2001;

Hart et al., 2007). Several reports have suggested that STZ kills

pancreatic b cells in an O-GlcNAc-dependent manner, based

on a number of observations. First, it was observed that millimolar

concentrations of STZ were able to raise general levels of protein

O-GlcNAcylation and that OGT was particularly abundant in the

pancreas—rapidly leading to protein hyper-O-GlcNAcylation un-

der conditions of OGA inhibition (Lubas et al., 1997; Roos et al.,

1998; Hanover et al., 1999; Akimoto et al., 1999). It was then noted

that STZ is a GlcNAc derivative and was found to inhibit OGA in

the millimolar range (Roos et al., 1998; Hanover et al., 1999; Liu

et al., 2000; Konrad et al., 2001). The mode of inhibition was

proposed to involve covalent modification of the enzyme or the

enzyme-catalyzed formation of a tight binding inhibitor (Konrad

et al., 2001; Toleman et al., 2006). Putting these data together, it

has been proposed that STZ specifically kills islet cells by inhibit-

ing OGA, resulting in hyper-O-GlcNAcylation and activation of

stress pathways leading to apoptosis (Liu et al., 2000; Konrad

et al., 2001).
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The cell biological implications of O-GlcNAc have attracted

rapidly increasing interest over the last few years (Zachara and

Hart, 2006; Hart et al., 2007). In particular, the possible compe-

tition between O-GlcNAcylation and phosphorylation (OGT/ki-

nases targeting the same serines/threonines) has become a topic

of vigorous research, due to the possibility of O-GlcNAc regulat-

ing a number of phosphorylation-dependent signal transduction

pathways. Many studies have used knockout/knockdown/over-

expression approaches to modulate levels of the OGA/OGT pro-

teins, thus testing the effects of hyper/hypo-O-GlcNAcylation on

particular cellular processes (e.g., Slawson et al., 2005; Hu et al.,

2006; Yang et al., 2008). However, an alternative approach has

been to use small-molecule inhibitors on live cells to inhibit

OGA, inducing hyper-O-GlcNAcylation (potent inhibitors of

OGT are not yet available). STZ and PUGNAc (Haltiwanger

et al., 1998), a nanomolar, but nonspecific, OGA inhibitor, have

been extensively used for such studies in the past decade, al-

though more potent/selective inhibitors (thiazoline derivatives

[Whitworth et al., 2007] and GlcNAcstatin [Dorfmueller et al.,

2006]) have recently become available. For instance, STZ has

been used to study the link between O-GlcNAc and p53 degra-

dation (Yang et al., 2006), effects of O-GlcNAc levels on the insu-

lin signaling pathway (Matthews et al., 2007), and O-GlcNAc-de-

pendent regulation of the proteasome (Liu et al., 2004). However,

as long as the mode of STZ action has not been established, the

value of such studies is uncertain.

Interestingly, two reports have recently called into question the

hypothesis that STZ kills b cells in an O-GlcNAc-dependent

manner. Comparing the STZ and (the more potent) PUGNAc in-

hibitor, it was noted that although both inhibitors similarly raised

O-GlcNAc levels, only STZ induced apoptotic DNA fragmenta-

tion and decreased insulin secretion and protein synthesis, re-

sulting in cell death (Gao et al., 2000). Similarly, whereas overex-

pression of a key enzyme in the UDP-GlcNAc biosynthetic

pathway led to the expected increase in O-GlcNAc levels, oxida-

tive stress, and b-cell-specific protein expression levels, these

effects could not be reproduced with PUGNAc (Kaneto et al.,

2001).

Here we have used an alternative chemical approach to further

distinguish between the ‘‘chemical poison’’ and ‘‘O-GlcNAc-de-

pendent’’ modes of STZ action. Capitalizing on available struc-

tural data, a galacto-configured isomer of STZ was designed

that no longer inhibits OGA but is still imported into pancreatic

cells. We show that this STZ isomer is equally potent as STZ in

inducing programmed DNA fragmentation, activation of caspase

3, and increasing membrane phosphatidylserine levels, all hall-

marks of apoptosis. These data support the chemical poison

mode of STZ action, where DNA damage leads to programmed

cell death, and establish that STZ does not kill b cells in an

O-GlcNAc-dependent manner.

RESULTS AND DISCUSSION

Structure of the STZ-OGA Complex
Previous reports have suggested that streptozotocin is a weak

(mM) inhibitor of human OGA (hOGA), acting through a covalent

suicide mechanism (Konrad et al., 2001). A very recent NMR

study has suggested a rearrangement of the nitrosourea STZ

side chain, resulting in the formation of an oxazoline-bearing
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structure that was proposed to be a tight-binding inhibitor (Tole-

man et al., 2006). To investigate this in more detail, we studied

binding of STZ to a bacterial OGA, the Clostridium perfringens

OGA (CpOGA; Rao et al., 2006), using X-ray crystallography.

CpOGA possesses an active site nearly identical to hOGA and

binds substrates/inhibitors with similar affinities (Rao et al.,

2006; Dorfmueller et al., 2006). Diffraction data of the CpOGA-

STZ complex were obtained to 2.2 Å and the structure was re-

fined to a model with an R factor of 0.196 (Rfree = 0.241). Early

on in the refinement, well-defined jFoj � jFcj, fcalc density was

observed for STZ in the CpOGA active site (Figure 1). The STZ

pyranose ring occupies a position similar to that of the potent

OGA inhibitor GlcNAcstatin (maximum positional shift = 1.0 Å;

Figure 1). The pyranose ring assumes a 4C1 conformation and

is in the b configuration. The nitrosourea moiety points toward

the bottom of the active site, occupying a position similar to

that of the isobutanamide group of GlcNAcstatin (Figure 1).

Many of the interactions observed in the CpOGA-GlcNAcstatin

complex are also present in the STZ complex, involving residues

Asn396, Asn429, and Asp401. Strikingly, however, no interac-

tions are seen between STZ and the catalytic machinery

(Asp297/Asp298) that tightly engages GlcNAcstatin in the

CpOGA-GlcNAcstatin complex (Figure 1). The overall conforma-

tion of the protein in the CpOGA-STZ complex is more similar to

the apo CpOGA structure (root-mean-square deviation [rmsd] on

Ca atoms = 0.3 Å) than to the GlcNAcstatin complex (rmsd =

1.0 Å). The electron density does not support a covalent interac-

tion between protein and inhibitor, or the presence of an oxazo-

linium ion generated by the rearrangement of the nitrosourea

group, as proposed recently (Toleman et al., 2006).

STZ Is a Competitive, but Not Suicidal, OGA Inhibitor
To further investigate the mode of inhibition of STZ, CpOGA ac-

tivity was measured using the 4-methylumbelliferone-GlcNAc

assay with a range of STZ concentrations and varying preincu-

bation times of enzyme and inhibitor (2 min–18 hr; Figure 2A).

Both commercial (Sigma) and resynthesized samples showed

that STZ inhibits CpOGA with an IC50 of 30 mM (Figure 2A). How-

ever, the dose-response curves did not show an incubation time-

dependent shift, suggesting STZ does not inhibit OGA through

a covalent mechanism, in agreement with the structural data.

CpOGA contains an active site that is nearly identical to that of

hOGA (Rao et al., 2006). However, a notable difference is

CpOGA Val331, which is a cysteine (Cys215) in hOGA. hOGA

has been reported to be sensitive to thiol-reactive compounds

(Dong and Hart, 1994), and the involvement of cysteines in STZ

inactivation of hOGA has been proposed (Lee et al., 2006).

Thus, we also studied the time dependence of STZ hOGA inhibi-

tion. hOGA (Km = 80 ± 6 mM, kcat = 13.9 ± 0.5 s�1) showed similar

steady-state kinetics as wild-type CpOGA (Km = 4.5 ± 1.7 mM,

kcat = 6.0 ± 0.8 s�1), in agreement with the conserved active

sites. Steady-state kinetics were measured at different sub-

strate/STZ concentrations with 1–240 min preincubation of the

enzyme/inhibitor mixture (Figures 2B and 2C). STZ inhibited

hOGA competitively with Ki = 64 ± 3 mM with 3 min incubation,

and there is no change in the dose-response curve for the longer

time periods of incubation. Thus, in agreement with the structural

data that show free, intact STZ binding to the OGA active site,
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there is no evidence for a time-dependent suicide/covalent in-

hibitory mechanism.

Galacto-Configured STZ Is a Poor OGA Inhibitor
Several studies have proposed that the pancreatic b cell toxicity

of STZ is due to its ability to inhibit b cell OGA, increasing general

levels of protein O-GlcNAcylation and driving cells toward apo-

ptosis (Liu et al., 2000; Konrad et al., 2001). We decided to inves-

tigate this further with the help of a chemical probe. Early kinetic

characterization of OGA has shown that the enzyme is inhibited

by GlcNAc, but not by GalNAc, unlike the GH 20 lysosomal hex-

osaminidases (Gao et al., 2001). This is readily explained by the

structural data, which show that a conserved aspartic acid

(Asp401 in CpOGA, Asp485 in hOGA) tethers the O6 and equa-

torial O4 hydroxyls (Figure 1). Indeed, mutation of Asp401 to an

alanine abrogates CpOGA activity (Rao et al., 2006). Thus, we

anticipated that a galacto-configured STZ analog (Gal-STZ; Fig-

ure 2D) would no longer be an OGA inhibitor, while maintaining

the reactive nitrosourea group. This would be a useful tool to dis-

sect the O-GlcNAc-dependent and the chemical poison models

of pancreatic b cell toxicity of STZ.

Gal-STZ was synthesized from D-galactosamine and N-

methyl-N-nitrosocarbamic acid N0-hydroxysuccinimide ester to

warrant the regioselective positioning of the N-nitroso group as

previously described for STZ (Martinez et al., 1982). A dose-re-

sponse curve for Gal-STZ against hOGA reveals that Gal-STZ

inhibits the human enzyme with IC50s > 100 mM (Figure 2D).

Figure 1. Structure of the CpOGA-STZ

Complex

Stereo figures of the crystallographically deter-

mined complexes of CpOGA with GlcNAcstatin

(Protein Data Bank ID code 2J62; Dorfmueller

et al., 2006) and STZ. The CpOGA structure is

shown as a gray ribbon, with active site residues

shown as sticks with gray carbon atoms, except

for two key catalytic residues (Asp297/Asp298,

yellow) and the active site Val331 (magenta). The

inhibitors are shown as stick models with green

carbon atoms. An ordered water molecule (red

sphere) is shown in the STZ structure. Hydrogen

bonds are indicated by black dashed lines. An

unbiased jFoj � jFcj, fcalc electron density map

(3.0 s) for STZ is shown in cyan.

This is at least three orders of magnitude

weaker than what was measured for STZ

(Figure 2A). Thus, Gal-STZ is a useful tool

to study possible differences in effects

on pancreatic b cells compared to STZ.

STZ, but Not Gal-STZ, Raises
Cellular O-GlcNAc Levels
Incubation with STZ has been shown to

raise general O-GlcNAc levels on cyto-

solic proteins (Konrad et al., 2001; Liu

et al., 2000). In our hands, incubation of

Min6 insulinoma cells with high (5–10 mM)

concentrations of STZ leads to an

observable increase in general O-GlcNA-

cylation as qualitatively assessed from an anti-O-GlcNAc west-

ern blot (Figure 3A). By comparison, the potent, and selective,

OGA inhibitor GlcNAcstatin shows significantly larger increases

in O-GlcNAcylation when incubated in micromolar concentra-

tions with Min6 cells (Figure 3A). Gal-STZ, used at the same con-

centrations as STZ, does not induce observable changes in

O-GlcNAcylation, in agreement with the enzyme inhibition data.

Both STZ and Gal-STZ, but Not GlcNAcstatin,
Reduce Insulinoma Cell Viability
STZ is known to cause pancreatic b cell death, and a number of,

sometimes conflicting, mechanisms have been proposed to ex-

plain this. A large body of data supports a chemical mechanism

where the nitrosourea group acts as a nitric oxide donor and/or

alkylating agent, essentially poisoning the cell (Turk et al., 1993;

Kaneto et al., 1995; Yamamoto et al., 1981; Bolzán and Bianchi,

2002). An alternative mechanism is cell death induced by hyper-

O-GlcNAcylation, through inhibition of OGA. Gal-STZ is a precise

chemical tool to distinguish these mechanisms—it is almost

isosteric to STZ and possesses the nitrosourea group, yet

does not inhibit OGA. We examined Min6 cell viability in the pres-

ence of 5–10 mM STZ or Gal-STZ (Figure 3B). Both compounds

significantly decreased cell viability, to (within experimental er-

ror) similar levels. Interestingly, however, the potent OGA inhibi-

tor GlcNAcstatin does not affect cell viability, despite its ability to

generate larger increases in general O-GlcNAcylation (Figures

3A and 3B).
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Figure 2. CpOGA and hOGA Inhibition by STZ and Gal-STZ

(A and B) Dose-response curves of streptozotocin (STZ, chemical structure shown in inset), preincubated with CpOGA or hOGA for different lengths of time prior

to the start of the reaction. Data were fitted using the standard IC50 equation in the GraFit program (Leatherbarrow, 2001).

(C) Lineweaver-Burk analysis of hOGA steady-state kinetics measured in the presence of 0–120 mM STZ, preincubated with the inhibitor for 3 min. Data were fitted

using the standard equation for competitive inhibition in the GraFit program (Leatherbarrow, 2001).

(D) Dose-response curves of galacto-configured streptozotocin (Gal-STZ, chemical structure shown in inset), against hOGA and CpOGA. The curves shown

represent approximate fits using the standard IC50 equation in the GraFit program (Leatherbarrow, 2001). Accurate fits could not be obtained due to the

weak inhibitory activity of Gal-STZ, and the IC50s are taken to be >100 mM for hOGA and >10 mM for CpOGA.
Both STZ and Gal-STZ, but Not GlcNAcstatin,
Induce Apoptosis
To investigate the mechanism of STZ/Gal-STZ-induced cell

death, we attempted to distinguish between necrosis and ap-

optosis using a number of approaches. One of the hallmarks

of apoptosis is controlled DNA fragmentation (Duke et al.,

1983). Compared to a healthy control population of Min6 cells,

cells treated with 5–10 mM Gal-STZ or STZ showed significant,

and similar, levels of DNA fragmentation (Figure 4A). Qualita-

tively, no such increases in DNA fragmentation were observed

for GlcNAcstatin. Similar results were obtained when drug-

treated and control Min6 cell populations were investigated un-

der the microscope. Caspase 3 is part of the caspase cascade

activated in apoptosis. Both STZ and Gal-STZ, but not

GlcNAcstatin, induce processing of full-length caspase down
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to the active protease fragment, as observed in fixed Min6

cells using an anti-caspase 3 antibody specific for the pro-

cessed, active, form (Figure 4B). Similar results were obtained

when caspase 3 activity was investigated in live cells, using

a fluorescent caspase 3 substrate. During 12 hr incubation

with either STZ or Gal-STZ, caspase 3 activity increases and

reaches similar levels (Figure 4C). To quantitatively measure

activation of the controlled cell death program, we studied

levels of phosphatidylserine displayed on the Min6 cell surface.

A fluorescence-assisted cell sorting (FACS) approach was

used with FITC-labeled Annexin V (Figures 4D and 4E). Com-

pared to control cells and a GlcNAcstatin-treated population,

STZ/Gal-STZ treatment significantly increased the fraction of

cells displaying high concentrations of phosphatidylserine on

the membrane.
ier Ltd All rights reserved
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Figure 3. STZ-Induced O-GlcNAcylation

and Min6 Cell Viability

(A) Western blot of Min6 insulinoma cell lysates

probed for O-GlcNAcylated proteins with an anti-

O-GlcNAc antibody (CTD110.6). Cells were

treated with 5/10 mM STZ or Gal-STZ or 20 mM

GlcNAcstatin for 16 hr.

(B) Trypan blue cell viability assay of Min6 cells

(24-well plate, 1 3 105 cells/well) treated with

STZ or Gal-STZ (5 mM or 10 mM) or GlcNAcstatin

(20 mM) for 6 hr. The live cells were measured in

triplicate and untreated cells were taken as

100% viable. Data errors represent the standard

deviation of the mean.
Concluding Remarks
The mechanism through which STZ selectively kills the insulin-se-

creting b cells in the pancreas has been the subject of a wide range

of studies. Genetic and biochemical approaches have been used

to propose that the source of its toxicity lies in the N-nitrosourea

moiety, acting as a source of nitric oxide and/or an alkyl donor

(Turk et al., 1993; Kaneto et al., 1995; Yamamoto et al., 1981; Bol-

zán and Bianchi, 2002).Theenigmaof why thiswouldbespecific to

b cells was solved by elegant overexpression/genetic studies that

demonstrated that GLUT2 is specifically expressed in the pan-

creas and is the only glucose transporter that recognizesand trans-

locates STZ (Schnedl et al., 1994; Ran et al., 2007). This would re-

duce the STZ glucosamine sugar to simply a transport mechanism

for getting the reactive N-nitrosourea moiety into the cell. However,

it was also noted that STZ is a GlcNAc derivative and, when tested

on OGA, indeed revealed OGA inhibitory activity (Konrad et al.,

2001). It was also noted that the pancreas contained unusually

high concentrations of OGT, whereas parallel studies demon-

strated that high levels of OGT/O-GlcNAc could drive cells toward

apoptosis (Liu et al., 2000, 2004; Slawson et al., 2005). Studies with

insulinoma cell lines and streptozotocin then showed a correlation

between increased protein O-GlcNAcylation (inhibition of OGA will

lead to unbalanced OGT activity) and cell death (Konrad et al.,

2001). Following on from this work, research on the role of

O-GlcNAc in many different cellular processes has included the

use of streptozotocin as an agent to modulate O-GlcNAc levels

in cells (e.g., Liu et al., 2004; Matthews et al., 2007; Yang et al.,

2006), despite uncertainty concerning its mode of action.

Earlier work had already demonstrated that PUGNAc, a much

more potent OGA inhibitor than STZ, although able to significantly

increase O-GlcNAc levels did not induce b cell death, arguing

against a link between STZ, O-GlcNAc, and apoptosis (Gao

et al., 2000; Kaneto et al., 2001). We sought to further investigate

this link using an alternative chemical approach. Although our

structure of the CpOGA-STZ complex does not support formation

of a covalent intermediate or a tight-binding oxazolinium ion as

recently suggested (Toleman et al., 2006), this complex was ob-

tained by soaking procedures and cannot be taken as conclusive

proof of the absence of such mechanisms. Nevertheless, in our

hands, STZ, either resynthesized or from a commercial source,

is a weak but purely competitive inhibitor without any evidence

of time-dependent inhibition. Inspired by the CpOGA-STZ com-

plex, the galacto isomer of STZ (Gal-STZ) was synthesized. This
Chemistry & Biology 15, 7
compound, as expected, no longer inhibits OGA. This also ex-

tended to cellular studies, where STZ was able to disrupt the bal-

ance between O-GlcNAc transfer and hydrolysis, whereas no

such effect was observed for Gal-STZ. Crucially, however, STZ

and Gal-STZ were equally able to induce apoptosis in the Min6

insulinoma cell line, as evidenced by total cell viability, induction

of caspase 3 activity, and phosphatidylserine levels on the cell

surface (Figures 3 and 4). Furthermore, the picomolar OGA inhib-

itor GlcNAcstatin, although able to raise O-GlcNAc levels, also

does not induce apoptosis. This is in line withearlier reports show-

ing that the OGA inhibitor PUGNAc (six orders of magnitude more

potent than STZ) does not induce cell death (Gao et al., 2000; Ka-

neto et al., 2001; Okuyama and Yachi, 2001). In support of these

earlier studies, the data reported here uncouple the ability of STZ

to induce apoptosis from its activity as an OGA inhibitor.

The discovery of O-GlcNAc more than two decades ago has

given rise to significant research activity to discover how this

posttranslational modification might regulate cellular processes,

in particular through interplay with protein phosphorylation

(Zachara and Hart, 2006; Hart et al., 2007). Although overexpres-

sion/gene knockout strategies have been pursued, interpreta-

tion of their results are complicated by the fact that both OGA

and OGT are known to participate in multiprotein complexes.

Chemical intervention with small-molecule inhibitors is a possible

alternative, although it is crucial to ensure the agents used are

selective. The work described here shows that STZ, now a widely

used inhibitor to study protein O-GlcNAcylation, kills b cells in an

O-GlcNAc-independent manner, supporting instead the chemi-

cal poison mode of action. It will therefore be more appropriate

to use more potent, and selective inhibitors, of OGA, such as

PUGNAc (Haltiwanger et al., 1998), GlcNAcstatin (Dorfmueller

et al., 2006), and the thiazolines (Whitworth et al., 2007) for cell

biological studies into the role of O-GlcNAc.

SIGNIFICANCE

Streptozotocin (STZ) iswidelyused to generate mouse models

of diabetes, or to treat pancreatic tumours. It has been pro-

posed that STZ toxicity is caused by its ability to inhibit O-

GlcNAcse, thereby raising levels of the intracellular O-GlcNAc

modification to lethal levels. This work attempts to further

study the mode of action of this drug by studying galacto-con-

figured isomer of STZ. We show that while streptozotocin
99–807, August 25, 2008 ª2008 Elsevier Ltd All rights reserved 803
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Figure 4. STZ/Gal-STZ-Induced Apoptosis in Min6 Cells

(A) DNA fragmentation assay of untreated Min6 cells and cells treated with Gal-STZ, STZ, or GlcNAcstatin for 6 hr. Lane 1: untreated cells; lane 2: GlcNAcstatin

(20 mM); lanes 3 and 4: Gal-STZ (5/10 mM); lanes 5 and 6: STZ (5/10 mM).

(B) Min6 cells stained for caspase 3 activity. Cells were grown on microslides. After adding Gal-STZ, STZ, or GlcNAcstatin and the NucView caspase substrate,

the slides were set up in the incubation chamber at 37�C and cells were imaged with a Leica inverted microscope every hour for 12 hr. NucView fluorescence

signal was detected using a FITC filter set. The scale bar represents 130 mm.

(C) Confocal microscopy images showing activated caspase 3 using a caspase 3 (Asp175) antibody (red) in Min6 cells treated with Gal-STZ, STZ, or GlcNAc-

statin. After fixation, cells were incubated with primary antibody, followed by Texas red-conjugated secondary antibody, and visualized.

(D and E) Early apoptosis as detected with Annexin V-FITC labeling of the cells. Min6 cells were treated with Gal-STZ, STZ, or GlcNAcstatin for 16 hr. After trypsi-

nization, cells (3–4 3 105) were resuspended in Annexin V buffer and incubated with Annexin V for 5 min before analyzing Annexin V binding by flow cytometry.

Gal-STZ and STZ showed more than 40% cell death at 10 mM concentration.

(D) A representative example of flow cytometric analysis.

(E) A histogram showing data representing mean ± SD in triplicate cultures.
competitively inhibits O-GlcNAcase and induces apoptosis,

its galacto-configured derivative no longer inhibits O-GlcNA-

case, yet still induces apoptosis. This novel chemical tool

strengthens the notion that STZ is not a specific inhibitor of

O-GlcNAcase but rather a general cytotoxic compound.

EXPERIMENTAL PROCEDURES

Mutagenesis, Protein Expression, and Purification

Wild-type CpOGA was expressed and purified as described previously (Rao

et al., 2006). The purified protein was concentrated to 15 mg/ml and diluted
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to the desired concentration in buffer (50 mM citric acid, 125 mM NaH2PO4

[pH 5.5]).

A truncated form of hOGA (residues 53–916) was cloned and expressed

as a GST fusion in Escherichia coli as described elsewhere (H.C.D. and

D.M.F.v.A., unpublished results). The purified GST-hOGA protein was dialyzed

into 50 mM Tris-HCl (pH 7.5), 0.1 mM EGTA, 150 mM NaCl2, 0.07% b-mercap-

toethanol, 0.1 mM PMSF, 1 mM benzamidine.

Enzymology

Enzyme assays were carried out as described previously (Rao et al., 2006; Dorf-

mueller et al., 2006). STZ and Gal-STZ were dissolved to a concentration of 100

mM in water. Steady-state kinetics of CpOGA and hOGA were determined using
ier Ltd All rights reserved
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the fluorogenic substrate 4-methylumbelliferyl-N-acetyl-b-D-glucosaminide

(4MU-GlcNAc; Sigma). Standard reaction mixtures (50 ml) contained 0.2 nM

CpOGAor2 nM hOGA inMcIlvainebuffer (0.2 M Na2HPO4 mixedwith 0.1M citric

acid to pH 6.8) supplemented with 0.1 mg/ml BSA, and 0–250 mM of substrate in

water. The reaction was run at room temperature for 7 min (CpOGA) or 60 min

(hOGA). The reaction was stopped by the addition of 100 ml of 3 M glycine-

NaOH (pH 10.3). The fluorescence of the released 4-methylumbelliferone

(4MU) was quantified using a FLX 800 microplate fluorescence reader (Bio-

Tek), with excitation and emission wavelengths of 360 and 460 nm, respectively.

The production of 4MU was linear with time for the incubation period used, and

less than 10% of the available substrate was hydrolyzed. Experiments were per-

formed in triplicate and spectra were corrected for the background emission

from the buffer and the protein. Michaelis-Menten parameters were obtained

by fitting the fluorescence intensity data with GraFit (Leatherbarrow, 2001).

IC50 determinations were carried out using substrate concentrations corre-

sponding to the Km established for CpOGA (2.9 mM) and hOGA (80.0 mM). STZ

was preincubated with the enzyme for 2 min to 18 hr. Gal-STZ was preincu-

bated with the reaction mixture for 2 min.

Determination of the STZ Ki was performed by steady-state kinetics in the

presence of different inhibitor concentrations (0, 30, 60, 120 mM). After 3 min

preincubation of hOGA with STZ, the reaction was run for 60 min. The mode

of inhibition was visually inspected by the Lineweaver-Burk plot, whereas

Kis were determined by fitting all fluorescence intensity data to the standard

equation for competitive inhibition in GraFit (Leatherbarrow, 2001).

Protein Crystallography

CpOGA crystals were produced as described previously (Rao et al., 2006). Pre-

cipitant was carefully removed and solid STZ was added straight to the drop.

After 45 min, the crystal was removed and cryoprotected in mother liquor

containing 15% glycerol. Diffraction data were collected to 2.2 Å on ID14-4

(European Synchrotron Radiation Facility), and processed with the HKL suite

(Otwinowski and Minor, 1997), giving 99.8 % completeness, 3.6-fold redun-

dancy, and an overall Rmerge of 0.059. The structure was refined with REFMAC

(Murshudov et al., 1997) together with model building in Coot (Emsley and Cow-

tan, 2004), giving a final model with good geometry (rmsd from ideal bonds =

0.012 Å; rmsd from ideal angles = 1.3�) and an R factor of 0.195 (Rfree = 0.241).

Synthesis of STZ and Gal-STZ

The procedures for preparation of N-methyl-N-nitrosocarbamic acid N0-hy-

droxysuccinimide ester and synthesis of STZ and Gal-STZ were adapted

from Martinez et al. (1982). Synthesis of Gal-STZ is given as a representative

procedure, as follows. To a stirred suspension of D-galactosamine hydrochlo-

ride 0.535 g (2.5 mmol) in methanol (10 ml), 25% stock sodium methylate so-

lution in methanol (0.57 ml; 2.5 mmol) was added at room temperature to give

a clear solution of free base. Then N-methyl-N-nitrosocarbamic acid N0-hy-

droxysuccinimide ester 0.553 g (2.75 mmol) was added in one portion to the

above solution at 0�C (ice bath). The reaction was stirred for 10 min and

then allowed to warm up to room temperature. At this point the solid went

into solution. The reaction was cooled again to 0�C and further stirred for

3 hr. The reaction was evaporated to dryness. The residue was dissolved in di-

chloromethane:methanol (4:1) and quickly passed through a short pad of silica

to remove unreacted galactosamine. The fractions containing the product

were pooled and evaporated. The residue was dissolved in aqueous n-butanol

(1:8; 15 ml). The solution was reduced to approximately one fourth of the initial

volume when crystal deposition began. More n-butanol was added to com-

plete sedimentation. The mixture was kept overnight at 4�C and filtered. Crys-

tals were washed subsequently with ethyl acetate and ether and dried under

vacuum to give 0.46 g (1.73 mmol, 69%) of the target product as pale yellow

crystals. Melting point 144�C (decomposition); [a]D = +77.8�; c 1.15 H2O.

The twin set of signals in NMR spectra reflects the fact that Gal-STZ was

obtained as a mixture of a:b anomers 1.6:1.

dH (500 MHz, D2O): 3.059 and 3.06 (3H, 2xs, CH3), 3.61 (0.6 H, dd, J5,6a = 4.4

Hz, J5,6b = 8 Hz, H-5b); 3.67 (3.2 H, m, H-6a,b; both isomers), 3.78 (0.6H, dd,

J3,2 = 11 Hz, J3,4 = 3.3 Hz, H-3b), 3.87 (0.6H, d, H-4b), 3.94 m (2.6H, H-4a, H-

3a, H-2b), 4.03 (1H, dd, J5,6a = J5,6b = 6.5 Hz, H-5a), 4.21 (1H, dd, J2,1 = 3.74 Hz,

J2,3 = 10.8 Hz, H-2a), 4.7 (H-1b, obscured by water signal), 5.27 (1H, d, H-1a).
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dC (125 MHz, D2O): 26.9 and 27 (CH3), 51.6 (2a), 55.1 (2b), 61 (6b), 61.2 (6a),

67.4 (3a), 68 (4b), 68.6 (4a), 70.6 (5a), 70.8 (3b), 75.2 (5b), 91.1 (1a), 95.2 (1b),

155.1, 155.5.

The stability of both STZ and Gal-STZ in aqueous solution was confirmed

by NMR spectroscopy. No noticeable changes in 1H and 13C spectra were

observed over a 16 hr period after dissolving STZ or Gal-STZ in D2O.

Cell Culture

Mouse pancreatic Min6 insulinoma cells were a generous gift from Professor

Jun-ichi Miyazaki, Osaka, Japan (Miyazaki et al., 1990). All tissue culture re-

agents were from Invitrogen. The cells were grown in a monolayer in Dulbec-

co’s modified Eagle’s medium supplemented with 15% fetal bovine serum at

37�C under 5% CO2. Gal-STZ and STZ were freshly prepared at the required

concentration by dissolving them in prewarmed cell-culture medium. This Gal-

STZ or STZ-containing medium was added to cells growing at a confluency of

50%–60% and incubated for the required amount of time depending on the

experiment. A GlcNAcstatin stock (67 mM) was prepared in DMSO.

Western Blotting

The anti-O-GlcNAc antibody CTD110.6 was purchased from Abcam. For

western blotting, cells were lysed in lysis buffer containing 50 mM Tris-HCl

(pH 7.5), 150 mM NaCl, 0.5% NP40 supplemented with protease inhibitor

cocktail (Roche). Protein concentration was determined by Coomassie protein

assay (Pierce). For immunoblotting, the protein samples were subjected to

10% SDS-PAGE, transferred to PVDF membrane, and blocked with 3%

BSA before incubating with primary antibody and subsequently with conju-

gated anti-mouse IgM-HRP. To detect proteins, a chemiluminescent signal

was developed using the ECL kit (Amersham Biosciences).

DNA Fragmentation Assay

Min6 cells were grown in six-well plates and treated with 5–10 mM Gal-STZ or

STZ or 20 mM GlcNAcstatin for 6 hr and then detached by trypsinization. A cell

suspension of 4–6 3 105 cells from each culture was pelleted at 2000 3 g

(5 min, 4�C) and subsequently lysed with 20 ml of lysis buffer (100 mM Tris-

HCl [pH 8], 2 mM EDTA, 0.8% [w/v] SDS). RNA was removed by adding 2 ml

of 50 mg/ml RNase A per sample, followed by incubating with 200 mg of pro-

teinase K. After 2 hr incubation at 50�C, DNA loading buffer was added and the

fragmented DNA samples were resolved on a 1.8% TBE-agarose gel, stained

with SYBR gold (Molecular Probes), and scanned using a Fuji FLA-5000 with

excitation at 493 nm and emission at 537 nm.

Cell Viability and Annexin V-FITC Flow Cytometry

Min6 cells were grown in 24-well plates and treated with 5–10 mM Gal-STZ or

STZ or 20 mM GlcNAcstatin, harvested after 6 hr, and stained with trypan blue

to distinguish live from dead cells. An Annexin V-FITC (using the Annexin V-

FITC apoptosis detection kit from BioVision) readout was used to quantitate

cell viability through FACS. Min6 cells were plated at a density of 2 3 105 cells

and treated for 6 hr with 5–10 mM Gal-STZ or STZ or 20 mM GlcNAcstatin. After

incubation, all the cells (attached and supernatant) were collected, washed

with PBS, and resuspended in the Annexin V binding buffer and incubated

with Annexin V for 5 min in the dark before analyzing with flow cytometry

(ex = 488 nm; em = 530 nm) using a FITC signal detector (FL 1).

Caspase 3 Activation Microscopy

To study Gal-STZ/STZ-induced apoptosis in fixed Min6 cells, a caspase 3

(Asp175) antibody (Cell Signaling Technology) was used which specifically de-

tects the large fragment of the activated caspase 3. Min6 cells were grown on

coverslips in six-well plates and treated with 5–10 mM Gal-STZ or STZ or

20 mM GlcNAcstatin for 8 hr. The cells were then fixed with 4% paraformalde-

hyde, blocked with 5% goat serum, incubated overnight with primary anti-

body, washed, and then incubated with a Texas red-conjugated anti-rabbit

secondary antibody for 1 hr. After washing, the cells were mounted with

Vectashield (Vector Labs) and examined under an LSM 510 Meta Zeiss micro-

scope with an excitation wavelength of 543 nm (Texas red).

Live cell imaging was performed with a Leica DMIRB inverted microscope

with a 103 phase contrast objective. Min6 cells were grown on an Ibidi micro-

slide VI and 10 mM Gal-STZ or STZ was added to the cells, followed immedi-

ately by addition of 10 mM freshly prepared NucView 488 caspase 3 substrate
99–807, August 25, 2008 ª2008 Elsevier Ltd All rights reserved 805
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(Biotium) and covered with mineral oil to reduce evaporation. The microslide

was placed in an environmental chamber at 37�C to which the microscope

was attached. The microscope, stage, and camera were controlled using

Openlab (Improvision) software. The NucView 488 fluorescence signal was de-

tected using a FITC filter set. The data were collected every hour for 12 hr from

five different microscopic fields for each sample.
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